Assumes some basic working knowledge of Unity and C#. I'm a beginner at this myself so google is your friend here.

Instructions are for a UW1 implementation but there is no reason why bringing in UW2 or SS1 assets and maps won't work. I just havent matched up the art/objects fully for those yet.

Getting Started

 1 Creating your workspace
 1.1 Start Unity. I've been using Unity 4.5.

 1.2 Create a New Project.

 1.3 Import the Character Controller.unitypackage

 1.4 Optionally if you want to implement a Gui like I have done install the free version of NGUI.

 1.5 Optionally if you want to implement persistance and save games install Unity Serialiser

 1.6 Create the following project folders off of the Assets folder in the Project explorer

· scripts

- This is where you will store the game scripts

· Editor

- This is where you will store Unity editor scripts for populating data

· Maps

· Maps\uw1
- This is where you will import the .fbx map files

· Maps\uw1\textures
-This is where you will store the level textures

· Maps\uw1\Materials
-This will be where the materials will be generated into

· Resources

· Resources\animation
-This is where the animation generator will save to

· Resources\Models
-This is where the 3d models you create will go to.

· Resources\Sprites
-This is where all the extracted object sprites will go to.

· Resources\Sprites\critters
-The animation frames for npcs & monsters

· Resources\Sprites\tmobj
-Some special uw1/2 textures.

· Resources\textures

· Resources\textures\doors
-Door textures for UW
 2 Create your maps models
 2.1 For this you'll need the Underworld Exporter tool. I'm assuming you've set up the game paths correctly in the config file that comes with exporter.

 2.2 Run the tool and you'll be presented with a mulitple choice menu. The choices should be fairly self explanatory in order to create a map file do the following

 2.2.1 Pick your game.

 2.2.2 Pick FBX Export (option 11)

 2.2.3 Pick the level archive to use. As save games are identical to level files you can generate from save files if you have them. But for now just pick option 0

 2.2.4 Pick the level you want to generate.

 2.2.5 Enter whatever you want for file name. It will be ignored at the moment

 2.2.6 The .fbx file is created at app path\fbx_output.fbx
 3 Create your textures
 3.1 Run the tool again

 3.2 Pick your game,

 3.3 Pick Bitmap Extraction.

 3.4 You will be presented with a list of files to extract from. I'd recommend trying them all out and seeing what you get to get familiar with everything but for extracting textures you need to pick option 3 Data\W64.tr for wall textures or option 1) data\F32.tr for floor textures

 3.5 Enter 0 for the palette number.

 3.6 Enter 1 for tga

 3.7 Enter a file name for naming the textures

 3.8 After extracting all the floor and wall textures you will need to make sure their names match the names in the texture config files (uw1_retro_config.txt). You will most likely have to rename the floor textures to both have the same name as the wall textures and to begin their numbering after the last properly extracted wall texture. A batch renaming tool such as irfanview should be able to do this for you.
 4 Bringing it all into Unity.
 4.1 Drag and drop the textures in to the Maps\uw1\textures folder in the Unity Project.

 4.2 Drag and drop the fbx map file into Maps\uw1. Allow a brief delay while it finds the textures and create the materials used in that level.

 4.3 In the materials folder you will now see a number of generated texture material files. Highlight them all and in the shader drop down change the shader being used from Transparent to diffuse. (You should also change the colour to white using the colour picker above the preview)

 4.4 Drag the map file from the folder onto the 3d window. Change it's position to 0,0,0 and it's rotation to -90,-180,0

 4.5 In the project folder click on the map asset. Tick the Generate Colliders check box. Click apply and wait while Unity sets up collision on the model.

 5 Testing it out.

 5.1 Drag a first person player controller from the standard assets and drag it into the map. You may have to resize.

 5.2 Hit the play button and hopefully you don't fall through the world or anything else strange happens.

Getting objects into the world

Object Sprites

Extract the sprites using the bitmap extractor from the Data\Objects.GR file in TGA format. Make sure the naming convention follows exactly what is in the object config text files. Drag and drop all the sprites in to the sprites folder you created earlier.

Object Populating

Objects are populated in to the editor via a script “macro”. To create these script macro's you need to create a script object in the Editor folder (right click->Create->C#Script). The following is the general syntax for creating the function.

[MenuItem("MenuName/MenuItemText")]

static void FunctionName()

{

//your code here

}

Once saved and the code is correct a menu bar item will appear in the Unity Editor allowing you to run the code in the editor (or at runtime in the debug player).

Note. I aim to have the code in this editor script work just as well at runtime as in the editor. Not all code available in the editor will also work at run time. Eventually I aim to have the creation process to be fully automatic based on external files (either the original game files or extracted data from the game files)

An example of my creation code is available on Githhub in the UnityScripts/Editor folder. The Create function is the main function here and should be a good starting point. You will have to add all the script objects in the other Unity Scripts folder to the scripts folder in Unity for the creation code to work properly.

Each object is created as a new GameObject, moved to it's position in the map, a sprite is added to the object and then and additional components added to support different behaviours such as doors, inventory items, triggers etc etc. In general each type of specific object will have it's own code to do this and should be fairly self explantory. In general these components are just script objects.

Generating Unity Scripts

To do all this quickly UnderWorld Exporter can generate the Unity scripts as follows

Run Exportor as before

Select Option11 Unity Script Generation

Pick your source file, level no as before

The data will be save to Unity.txt in the app folder.

Copy and paste this data into the Create() editor script. Replacing what is already there.

Save and run the code from the editor menu.

Models

A door model is included in the UnderWorldExporter assets github.

The Player

Name the gameobject Gronk. Seriously.

Make sure the following script components are added to the object.

· UWCharacter

· PlayerInventory

· Container

· Magic

Add a light to the player as well.

Tweak and adjust movement/size and other parameters to your own preferences. In particular make sure the clipping planes on the camera are set so as to stop you from seeing through walls when close.

The UW style HUD.

I'm having trouble exporting the Hub so I'm just going to document some points on how to create one. (UW1 hud).

I'm using NGUI (free version to provide the hud components and scaling. Reading up and experimenting with NGUI is recommended. I may eventually move away from NGUI if the new built in GUI options have the flexability required.

 In particular experiment and learn how to scale and anchor ngui elements. I won't cover that in this document. Unless stated all UI elements are scaled and anchored. I think you can just use to wizard to get started on the HUD. Items will need to be ordered as well.

You will need to extract the hud graphics using exporter. Most hub graphics are in the byt files.

Creating a blank transparent sprite will be usefull as well for when you want to display nothing on inventory slots.

IMPORTANT: For all the sprites/graphics used in NGUI you will need to create an Atlas file. Just highlight the art in the folder and use the atlas creator tool in the NGUI menu. The atlas will need to be assigned to the ui element using it. Eg objects atlas to inventory slots. Runes atlas to rune slots. Paperdoll atlas to paperdoll slots etc.

Camera

The HUD will have it's own camera. Give it a depth of 1. Set the depth on the camera on the player to 0 and tweak the viewport rect settings on the players camera so it only renders to the window. My settings are x=0.163, y=0.355. W=.54, H = 0.572.

Main Hud Graphic

Just make sure this covers the entire window and stretches accordingly.

The 3dWindow

Create a 3DWinArea UISprite. Assign a blank sprite.

Resize & position the object to cover the entire 3d window area.

Add the WindowDetect script. This script is used to distingish if the mouse is over the 3d view or on the hud and to handle events like throwing or using held objects in the view.

Mode Buttons

(Options, talk, pickup, look, attack and use modes)

These are just NGUI buttons. The Hud_Hover(terrible name that will change) script is added to each one. Each button has a different interaction mode variable so the script will know which button is which. Just go from 0,1,2,4,8,16 in button order.

The Inventory

Each inventory slot is a ngui UISprite button. One will need to be created and placed for each. The body parts will need to be sized so that the correct object art will display when items are equiped.

Add an InventorySlot script object to each one. Set the SlotIndex variable on each object a assign what slot it is part of as follows

Helm =0

Chest =1

Legs =2

Boots = 3

Gloves=4

Right Shoulder = 5

Left Shoulder=6

Right Hand =7

Left Hand= 8

Right Ring =9

Left ring = 10

BackpackSlots 0 to 7 set to 11 to 18 accordingly.

Add another blank UISprite called ContainerOpened and place next to the paperdolls feet. This is for displaying the currently opened container. Attach a ContainerOpened script Object.

The Rune bag and Magic interface

Create a UI sprite and make it the size of the panel area. Call it RuneBagDisplay. Assign the Rune Bag interface panel graphics to it.

Create 24 Ngui UISprite buttons. Similar to the inventory sprites. Place these in their correct positions. Attach a RuneSlot script to each one. Set the slot number on each of these to 0 to 23.

Create 1 NGUI UISprite button called ClearRunes. Attach the ClearRunes script. Place it over the graphic(rune+arrow+bag) that is meant to clear the selected runes.

Create 3 more UISprite Buttons called ActiveRune0 to 2. Place them over the shelf next to the compass. Attach an ActiveRuneSlot on each one and set the Slot Number 0 to 2 in order.

